
J Glob Optim (2008) 42:221–253
DOI 10.1007/s10898-007-9239-9

A memetic algorithm for multi-objective dynamic
location problems

Joana Dias · M. Eugénia Captivo · João Clímaco

Received: 10 September 2007 / Accepted: 13 September 2007 / Published online: 13 October 2007
© Springer Science+Business Media, LLC. 2007

Abstract This paper describes a new multiobjective interactive memetic algorithm applied
to dynamic location problems. The memetic algorithm integrates genetic procedures and local
search. It is able to solve capacitated and uncapacitated multi-objective single or multi-level
dynamic location problems. These problems are characterized by explicitly considering the
possibility of a facility being open, closed and reopen more than once during the planning
horizon. It is possible to distinguish the opening and reopening periods, assigning them dif-
ferent coefficient values in the objective functions. The algorithm is part of an interactive
procedure that asks the decision maker to define interesting search areas by establishing lim-
its to the objective function values or by indicating reference points. The procedure will be
applied to some illustrative location problems.

Keywords Location problems · Genetic algorithms · Local search ·Multi-objective

1 Introduction

Since the pioneering work of Schaffer [41], parent of the VEGA algorithm, much has been
said and done about the use of evolutionary algorithms in a multi-objective scenario. The
existence of a population of solutions motivates, immediately, the idea of simultaneously
approximating several non-dominated solutions. Jones et al. [29], say that about 70% of the
papers describing the use of metaheuristics for multi-objective problems are about genetic
algorithms. According to the authors, the success of the known algorithms is justified by
the fact that they are the perfect tools for the generation of sets of good quality efficient

J. Dias (B) · J. Clímaco
Faculdade de Economia and INESC-Coimbra, Universidade de Coimbra, Av. Dias da Silva, 165,
Coimbra 3004-512, Portugal
e-mail: joana@fe.uc.pt

M. E. Captivo
Faculdade de Ciências, Centro de Investigação Operacional, Universidade de Lisboa, Campo Grande,
Bloco C6, Piso 4, Lisboa 1749-016, Portugal

123

222 J Glob Optim (2008) 42:221–253

solutions. Some of the most well known multi-objective evolutionary algorithms are MOGA
[22], NSGA [44], SPEA [54].

There are several references in the literature that describe the use of metaheuristics, in
particular genetic algorithms, in the location problems research field. Hosage and Goodchild
[25], study the possibilities of applying genetic algorithms to location problems. Kratica
[30]; Kratica et al. [31], use genetic algorithms for the simple plant location problem, and
propose hybridization with an ADD heuristic (at each iteration only the facility that contrib-
utes to the maximum reduction of the overall cost is open). Filipovic et al. [21], introduce
the grained tournament selection operator. Jaramillo et al. [28], study genetic algorithms as
an alternative way of calculating good quality solutions to location problems, and conclude
that these algorithms should not be used for capacitated location problems with fixed costs.
Shimizu [43], mingles genetic algorithms and mathematical programming, solving the sani-
tary landfill for hazardous materials location problem, in a multi-objective environment. Cor-
rea et al. [9], apply genetic algorithms to a real problem that can be formulated as a p-median
problem. Cheung et al. [4], describe a genetic algorithm, partially implemented in a parallel
architecture, which is applied to several location and location-allocation problems in the oil
industry. Cortinhal and Captivo [10], describe genetic algorithms applied to the capacitated
location problem with total assignment. Domínguez-Marín et al. [19], solve location prob-
lems (p-centre and p-median) using genetic algorithms and variable neighbourhood search.

In this paper we will consider a dynamic location problem where facilities can be organized
in a single or multi-level structure, and can be capacitated or uncapacitated. It is possible
to open, close and reopen each facility more than once during the planning horizon. All the
objective functions considered are linear (there are several examples of interesting objectives
that can be represented by a linear function, as seen, for instance, in the works of [26,37,38]).
The problem is tackled through the use of a memetic algorithm, executed inside an inter-
active method. In most evolutionary algorithms dedicated to multi-objective problems, the
interaction with the decision maker (DM) happens before or after the calculation of non-
dominated solutions (exceptions can be found in [1,2,40,42]). Coello Coello [5], states that
little has been done in the evolutionary multi-objective algorithms research field considering
explicitly the decision makers preferences, and allowing these preferences to change with
time. Veldhuizen [47], considers surprising the lack of efforts put into the development of
interactive methods. According to the author, no matter the algorithm, the interaction with
the DM can only lead to better solutions. Coello Coello et al. [6], say that interactive methods
are the best choice, especially when the decision maker is interested in a particular search
area.

This paper describes a new multiobjective interactive memetic algorithm applied to
dynamic location problems. The interaction with decision maker is based on either a ref-
erence points approach or on the establishment of upper bounds. The decision maker can
force the algorithm to look for solutions that are placed within a region of interest.

This paper is organized as follows: in the next section we present the problem, in
Sect. 2 the main characteristics of our algorithm are described, in Sect. 3 the interaction
with the decision maker is explained, in Sect. 4 some computational results are presented
and, finally, in Sect. 5, we point out some conclusions and possible future work.

2 The dynamic location problem

Consider that there are n clients, m facilities’ possible locations, and T is the number of time
periods considered in the planning horizon. A facility can be opened, closed and reopened

123

J Glob Optim (2008) 42:221–253 223

more than once during the planning horizon. The decision maker will need to define which
facilities will be open in each time period and for how long, and a way to assign clients to
operating facilities in such a way that all the clients’ demand is satisfied. The objective func-
tions can represent the total cost, the risk of locating the facilities, equity concerns, or other,
and will be considered as minimization functions. We developed a model considering two
different types of facilities: (1) uncapacitated facilities; (2) facilities with maximum and/or
minimum capacity restrictions. Each possible location has a set of location variables asso-
ciated with it, that determine the opening, closing and reopening time periods. Considering
location i , there are two sets of binary variables as follows:

aξi t =
⎧
⎨

⎩

1 if facility i is opened at the beginning of period t
and stays open until the end of period ξ

0 otherwise
, t ≤ ξ ≤ T

r ξi t =
⎧
⎨

⎩

1 if facility i is reopened at the beginning of period t
and stays open until the end of period ξ

0 otherwise
, 1< t ≤ ξ ≤ T

There are also assignment variables. In the single-level case they are of the type xt
i j , that

define the flow between client j and facility i during time period t . In the multi-level case
they are of the type xt

pj , and represent the flow originated from client j , assigned to a path p
of open facilities. A path of facilities can be composed of up to µ facilities (where µ repre-
sents the number of levels), with, at most, one facility of each level. The objective functions
considered are linear with respect to location and assignment variables. The model assures
that each client’s demand in each time period has to be satisfied; each client can only be
assigned to operating facilities or paths composed of open facilities only. A facility can only
be reopened at the beginning of period t if it has been opened earlier and can only be opened
once during the planning horizon. Only one facility can be open at each location, in each
time period. Problems’ formulations as Mixed Integer Linear Programming Problems can be
found in [13–17].

It is interesting to note that, depending on the type of actual facilities, after fixing a set of
feasible values for the location variables, it is rather simple to calculate the optimal allocation
variables in each time period:

1. If all facilities are uncapacitated, then each client is assigned to exactly one facility (or
path of facilities), the cheapest one;

2. If there are capacitated facilities, then it is necessary to solve a transportation (or a
transshipment) problem.

3 The memetic algorithm

According to Osman and Kelly [34], an evolutionary algorithm is composed by five basic
components: (1) a genetic representation of solutions to a problem; (2) a way to create an
initial population of solutions; (3) evaluation and selection functions; (4) genetic operators
that alter the genetic composition of children during reproduction and (5) values for the
parameters. These authors say that the data structure used for representation of solutions
to the problem and the set of genetic operators constitute the algorithm’s most essential
components. These components will be described in the following subsections.

123

224 J Glob Optim (2008) 42:221–253

 i
t

1 2 3 4 5

1
2
3

The facility is not operating.
The facility is operating.
The facility is operating and it was reopened at the beginning of this time period.

Chromosome L Chromosome F

 i
t

1 2 3 4 5
 i

t
1 2 3 4 5

1 1 0 0 1 1 1 1 1 0 0 1

2 1 1 0 0 0 2 0 0 0 1 1

3 1 1 0 1 0 3 1 0 1 0 1

a

b

Fig. 1 (a) Visual representation of the solution (b) An individual’s representation

3.1 Representation of solutions

Each individual is represented using two chromosomes (L and F), both composed of genes
that can only take values 0 or 1. Gene in position (t − 1)m+ i of the L-chromosome is equal
to 1 if facility i is open during time period t , and equal to 0 otherwise. This information
is not sufficient to build an admissible solution for the problem, because it is necessary to
determine the open and reopen periods: a facility i can be operating from τ to ξ but have been
closed at the end of period χ and reopened at the beginning of χ + 1, with τ ≤ χ ≤ ξ . The
second chromosome (F-chromosome) will give exactly this information. Gene in position
(t − 1)m + i will be equal to 1 if facility i is reopened at the beginning of period t , and
0 otherwise. The F-chromosome is less important than the L-chromosome (the F-chromo-
somes complement the information provided by L-chromosomes). Its genes’ values will only
be taken into account when strictly needed. Consider the following example (Figs. 1a, b),
with five possible locations and three time periods (a matrix notation is used for ease of
understanding). In terms of location variables, these two chromosomes would be interpreted
as all variables equal to zero except a2

11, r3
13, a3

22, a1
41, r3

43, a1
51. The three F-chromosome

genes represented in bold italic are the only genes (from this chromosome) that really matter
for building the solution. All the other genes are simply ignored (they can have a 0 or 1 value).

Definition 1 Consider two individuals that differ only in one L(F)-chromosome gene. If
the solutions they represent in the phenotype space are different, then the L(F)-chromosome
gene is called determinant, otherwise is called non-determinant.

Proposition 1 All L-chromosome genes are determinant.

Proposition 2 The only F-chromosome genes that are determinant are genes in position
(t − 1)m + i , for some i and t > 1, such that L-chromosome genes (t − 1)m + i and
(t − 2)m + i are both equal to one.

Proposition 3 It is possible to represent each and every admissible solution to the location
problem using a pair of F- and L-chromosomes.

123

J Glob Optim (2008) 42:221–253 225

It is straightforward to conclude that this representation is redundant, according to the
definition of [39]1: representations are redundant if the number of genotypes exceeds the
number of phenotypes. This representation guarantees that the individuals codify a feasible
solution, if the capacity restrictions are relaxed. These restrictions are the only ones that can
be violated.

Consider a population P of individuals x . Consider that fi (x) represents the fitness of
x with respect to the i-th objective function, X is the set of all admissible solutions to the
location problem. Let us consider the following definitions:

Definition 2 An individual x ∈ P is P-efficient if and only if there is no other individual
x ′ ∈ P such that fi (x ′) ≤ fi (x), for all objective functions i , and fi (x ′) < fi (x) for at least
one objective function i . Otherwise the individual x is said to be P-non efficient.

Definition 3 Consider two individuals x and x ′ such that fi (x) ≤ fi (x ′), for all objective
functions i , and fi (x) < fi (x ′) for at least one objective function i . Then x is said to dominate
x ′.

Definition 4 Consider a population Psuch that all solutions y ∈ X are represented by, at
least, one individual x . If x is P-efficient, then x is efficient and the corresponding solution
y is efficient. Otherwise y is not efficient.

Definition 5 If x ∈ X is efficient, its image in the objective space, z, is non-dominated.

Proposition 4 If x is P-efficient, for every set P considered, then x is said to be efficient.

Proposition 5 An individual x can be P1-efficient and P2-non efficient, if and only if P2 has
at least one individual x ′ /∈ P1 such that x ′ dominates x.

3.2 Fitness and calculation of optimal assignments

The first question rose when dealing with multi-objective problems is how to calculate the
individuals’ fitness. The fitness of an individual x can be calculated in various forms (using
linear or non-linear aggregating functions, considering the number of individuals that dom-
inate or are dominated by x in the current population, asking the DM to make pair-wise
comparisons between different individuals, etc2).

In the algorithm developed, the fitness of an individual can be calculated in two different
ways, depending on the type of interaction with the decision maker: if the decision maker
wants to establish upper bounds on the objective function values (considering that all objec-
tives are of the minimization type), then a weighted objective function is considered. If the
decision maker prefers to indicate reference points, then a particular achievement function
is used.

There are several procedures that determine the weights to assign to each objective func-
tion value [48]. In this work, the weights used can be interpreted in two different ways. They
can be related to the decision maker’s preferences, if he/she wishes to explicitly indicate val-
ues for the weights. Nevertheless, the weights can be implicitly calculated by the algorithm,
without the decision maker interference. These weights are mainly seen as a technical tool,
not as a way of eliciting preferences from the DM.

1 If there are q determinant genes within the F-chromosome, this means that there can be 2(T m−q) different
individuals codifying exactly the same solution.
2 See Coello et al. [6], for a review.

123

226 J Glob Optim (2008) 42:221–253

If the decision maker establishes aspiration and reservation levels (the first ones represent
the situation the decision maker would like to achieve, while the latter represent a situation
the decision maker wants to get away from — [45,49,50]), then the fitness of each individual
is calculated based on these levels. Consider a function σi

(
qi , qi , qi

)
[49], such that qi rep-

resents the i th objective function value corresponding to individual q , qi and qi are the i th
aspiration and reservation levels, respectively, qi,lo and qi,up are the lower and upper limits
known for the i th objective function value. Then:

σi
(
qi , qi , qi

) =
⎧
⎨

⎩

1+ α (
qi − qi

)
/
(
qi − qi,lo

)
, qi,lo ≤ qi ≤ qi(

qi − qi
)
/
(
qi − qi

)
, qi < qi < qi

β
(
qi − qi

)
/
(
qi,up − qi

)
, qi ≤ qi ≤ qi,up

(1)

α and β should be greater than zero, and chosen such that this function is monotonous and
concave. This function shows how far a given individual is from the reference points defined.
The fitness of an individual q , with relation to q and q, is calculated using function σ

(
q, q, q

)

defined in (2), where ν represents the total number of objective functions considered.

σ
(
q, q, q

) =
(

min
1≤i≤ν σi

(
qi , qi , qi

)+ ε
ν∑

i=1

σi
(
qi , qi , qi

)
)

/(1+ νε), ε > 0 (2)

The value given by (2) characterizes an individual with respect to the distance between it
and the reference points defined, considering as possible the following situations: the indi-
vidual can either dominate or be dominated by the aspiration or the reservation levels. An
individual that is far from the aspiration point but dominates it is considered better than an
individual that corresponds exactly to the aspiration point.

As the only variables that are represented by an individual are the location variables, for
each individual one needs to calculate the assignment variables’ values. This is a challenging
task, because the calculation of optimal assignments is achieved through the resolution of a
mono-objective problem. It is also possible to consider several objectives in the assignment
problem, which would increase the computational time needed, and extra data structures
would become necessary (because for two identical individuals, different assignment vari-
ables could be calculated). In the present version, we chose to use weights and to consider a
weighted objective function value to calculate optimal assignment variables. If the interaction
with the DM is based on the establishment of upper bounds on the objective function values,
then the weighted objective function that is used to calculate the fitness of an individual is
also used to solve the assignment problems. On the other hand, if the interaction is based
on the definition of reference points and function (2) is used to calculate an individual’s
fitness, then the algorithm chooses randomly, for each generation, a set of weights to build
the weighted objective function value for the resolution of each assignment problem. Once
again, these weights are not interpreted as representing the DM’s preferences. They are only
used so that the algorithm is able to calculate an admissible assignment solution.

The individuals that represent unfeasible solutions are not deleted from the population
and are given a fitness value equal to +∞.

3.3 Genetic operators

The memetic algorithm developed uses the most common genetic operators found in the
literature: selection, crossover and mutation. Selection is based on the binary tournament
selection with sharing [11,33]. In every generation, two individuals i and j are randomly
selected from the parent population. A sharing value sh(i, j) is calculated using the

123

J Glob Optim (2008) 42:221–253 227

distance between them given by the number of L-chromosome genes that are different in
both individuals.

dϑi j =
{

1, if the ϑ − gene in the L-chromosome is different in iand j
0, otherwise

, di j =
mT∑

ϑ=1

dϑi j

nci =
∑

j belongs to the new population

sh (i, j), sh (i, j) =
{

1−
(

di j
αshare

)α
, if di j ≤ αshare

0, otherwise
.

For each selected individual i , all values sh(i , j)3 (calculated considering all individuals j
belonging to the new—children—population) are summed up (nci). If, at the moment of the
selection, there are already num individuals in the new population, then nci = num − nci .
The individual’s fitness value will be divided by nci , and the resulting value f (i) is used in the
binary tournament selection. In the presence of two randomly chosen individuals x1 and x2,
if f (x1) < f (x2) then individual x1 wins the binary tournament with a given probability pbt

(usually closer to one). The crossover operator used is an adaptation of the one-point cross-
over. Two parent solutions will be recombined yielding two children. A value κ between 1 and
T is randomly chosen. The first child will have all L- and F-chromosome genes (t−1)m+ i ,
with t < κ , equal to the first parent, and all the other genes equal to the second parent. The
opposite happens with the second child. This crossover operator does not guarantee that the
children of two admissible parents are admissible. We also developed some special operators
that take advantage of the known structure of the problem [15], namely a repair algorithm
(to diminish the number of non-admissible individuals) and an algorithm that changes only
the F-chromosome’s genes (the change openings, to diminish the fixed costs). The structure
of the repair algorithm for single-level problems is presented as Algorithm 1. Algorithm 2
shows the structure of the change openings procedure.

An individual represents an unfeasible solution if it violates any maximum or minimum
capacity restrictions. These violations are caused by L-chromosome genes. The repair algo-
rithm changes in a random but guided manner, L-chromosome genes. If, for instance, maxi-
mum capacity restrictions are violated at period t , it randomly opens more facilities (changes
genes from zero to one) such that the minimum capacity restrictions remain satisfied. If
minimum capacity restrictions are violated at period t , it randomly closes facilities (changes
genes from one to zero) such that the maximum capacity restrictions remain satisfied. As all
changes are performed in a random manner, the repair algorithm cannot guarantee to find an
admissible solution. That is why a maximum number of tries had to be imposed. We chose
to repair an infeasible solution in a random manner because the use of a more structured
algorithm (like a greedy heuristic) can introduce a strong bias in the search [7].

The change openings procedure studies the effect on the location variables’ objective
function coefficients of changes in some of the determinant F-chromosome genes. As stated
in proposition 2, we can identify an F-chromosome determinant gene if the L-chromosome
genes in the same and in the immediately previous time position are equal to one for some
facility i . The procedure does not try to change every determinant F-chromosome gene,
because that would be very time consuming. It only identifies situations such that a facility
i is open from the beginning of time period τ to the end of time period ξ , ξ > τ , and is
reopened during that interval (in a time period t ≤ ξ). This means that there is a determinant
F-chromosome gene in position (t − 1)m+ i that is equal to one, and this is the gene whose

3 The αshare value is calculated as described in [11], and α is considered equal to one.

123

228 J Glob Optim (2008) 42:221–253

value the procedure tries to change to zero. If the current objective function value diminishes,
then the gene’s value is changed, otherwise retains its original value.

Algorithm 1 Repair algorithm
Predefined parameters: NMAXTRY-total number of iterations in each time period.
dt

j -demand of client j during time period t ; Qi -maximum capacity of facility i; Q′i -minimum
capacity of facility i

1. t ← 1.
2. ntries← 1. If t > T then stop.
3. Calculate D ← ∑

j
dt

j , Cmax ← total maximum capacity of facilities operating during

t4, Cmin ← total minimum capacity of facilities operating during t .
4. ntries←ntries + 1. If ntries>NMAXTRY then stop.
5. If Cmin > D then go to 6. If Cmax < D then go to 7.
6. Choose randomly a capacitated facility such that L-chromosome[t ,i] = 1 and Cmax − Qi

≥ D. L-chromosome[t, i] ← 0, Cmin ← Cmin − Q′i , Cmax ← Cmax − Qi . Go to 5.
7. Choose randomly a facility i such that L-chromosome[t ,i] = 0 and Cmin + Q′i ≤ D.

L-chromosome[t, i] ← 1, Cmin ← Cmin + Q′i . Go to 5.
8. Solve a transportation problem. t ← t + 1 and go to 2.

Algorithm 2 Change-openings procedure
m-number of possible locations for facilities.

1. i ← 1;
2. If i > m, then stop.

3. Detect a pair of location variables equal to one of the form
(

aξiτ , r
ψ
iξ+1

)
or

(
r ξiτ , r

ψ
iξ+1

)
.

If there are no pair of variables in this situation, then i ← i + 1 and go to 2.

4. � ← F Aψiτ

(
or F Rψiτ

)
− F Aξiτ

(
or F Rξiτ

)
− F Rψiξ+1. If � < 0 then F-chromosome

[ξ + 1, i]← 0, aξiτ (or r ξiτ)← 0, rψiξ+1 ← 0 and aψiτ (or rψiτ)← 1. Go to 3.

3.4 Local search

Local search plays a very important role in the algorithm developed. Examples of genetic
algorithms hybridized with local search can also be found in [27,32,35,51]. Every individual
in the new population is a potential starting solution for the local search procedure, running
with a given probability pls . If a child is equal to one of the parents that, in turn, resulted
from local search, this probability is equal to zero. The procedure developed considers the
weighted objective function value that is being used in the current generation for the calcula-
tion of assignments, and tries to improve an individual’s fitness, calculated according to this
weighted objective function value, by searching k-neighbourhoods, from k = 1 to T , where
an individual x ′ is said to be in the k-neighbourhood of individual x if and only if x ′ differs
from x by the insertion or removal of at most k continuous operating time periods to a single
facility i . Whenever the fitness function is improved, the individual’s genotype is immedi-
ately changed, and the search continues with this new individual as the starting-point. This
procedure is very time consuming and can be responsible for 95% or more of the algorithm’s
total computational time. This makes it compulsory to improve its performance. We changed
the local search procedure, by performing a sensitivity analysis (based on the dual optimal

4 If there is at least one uncapacitated facility in operation during t , then Cmax ←+ ∝.

123

J Glob Optim (2008) 42:221–253 229

solution of the assignment problems) in order to estimate if the present neighbour is or is not
better than the current individual. This sensitivity analysis is only performed if in presence of
capacitated facilities, and can decrease the total computational time by 20% or more without
a significant decrease in the final solution’s quality.

3.5 Populations

The present implementation of our algorithm works with two populations. Borrowing the
notation of [46], Pcurrent (ger) represents the population during the gerth generation. Popula-

tion Pknown(ger) is composed of all PU-efficient individuals, where PU =
ger⋃

g=1
Pcurrent (g).

The first Pcurrent population is constituted by individuals randomly created that are modified
by the repair, change openings and local search procedures (clones are allowed). We chose
to work with small populations. As there is a risk of premature convergence to a poor quality
solution, we overcame this disadvantage by changing on-line the total number of individuals
in the current population. The number of individuals is increased whenever a predefined
number of generations (nimp) are executed without improving the fitness of the best indi-
vidual, until the maximum number of individuals in Pcurrent is reached. All new individuals
are randomly initialized. The population is initialized with npop individuals calculated as

described in [36]: it is the minimum value such that
(

1− (1
2

)npop−1
)l ≥ 0.995, where l is

the number of genes of each individual. Each individual has two chromosomes, each with
mT genes, so l should be equal to 2mT. As the F-chromosome has very few determinant
genes, we chose to consider l equal to mT for the calculation of the initial value of npop, and
equal to 2mT for the calculation of the maximum value npop can take.

Notice that there can be individuals that are efficient with respect to Pcurrent and not
efficient with respect to Pknown . Furthermore, there can be individuals that are efficient with
respect to Pknown(ger) and not efficient with respect to Pknown(ger + g), g > 0. This means
that it is not sufficient to copy all efficient individuals from Pcurrent (ger) to Pknown(ger): it is
also necessary to verify the efficiency of all the elements of Pcurrent (ger) and Pknown(ger−1).
This procedure is an O(n2) algorithm (n represents the number of individuals in the popula-
tion, [46]), so it should not be performed too often. It is also important to notice that population
Pknown has limited capacity: if the algorithm finds many Pknown-efficient solutions, then it
is necessary to update the set, possibly eliminating some individuals and inserting others.
Even considering that Pknown could have an unlimited number of individuals, it would not
be reasonable to show a great number of solutions to the DM. So, it will always be nec-
essary to devise some kind of procedure to choose a subset of Pknown-efficient solutions.
Another interesting subject is to define how the two populations will interact between them
and with the algorithm. In the present implementation, population Pknown has no participa-
tion in crossover or selection operators. None of its members interact with individuals in
Pcurrent . There are authors who feel that a close interaction between the two populations can
only benefit the algorithm [54]. One possible interaction between the two populations could
be easily implemented: whenever the number of individuals in Pcurrent is increased, the new
individuals could be randomly chosen from Pknown , instead of randomly initialized.

In our algorithm, the set Pknown(ger) is equal to set Pknown(ger − 1) ∪ Pcurrent (ger).
The non efficient individuals in Pknown are only deleted from this population if the DM
wants to see all Pknown-efficient solutions calculated thus far or if the number of elements

5 The value 0.99 represents the probability of at least one allele being present at each locus in the initial
population.

123

230 J Glob Optim (2008) 42:221–253

in Pcurrent (ger) is greater than the remaining free capacity of Pknown . In the latter case only
efficient individuals are inserted and all non-efficient individuals are deleted from Pknown

6.
If Pknown has reached its maximum capacity and has only efficient individuals, some of them
will have to be removed. In the present implementation of the algorithm the individual to be
removed is randomly chosen. Many other procedures could be devised: asking the DM which
individual he/she wishes to remove or maintain, applying clustering algorithms in order to
insure that set Pknown maintains a good diversified efficient solution set, etc.

The Pknown-efficient individuals are, at each generation, an approximation of the true
efficient solutions set (that is unknown).

3.6 The overall algorithm

Algorithms 3–5 describe the overall functioning scheme of the memetic algorithm.

Algorithm 3 Multi-objective memetic algorithm
ngenerations—maximum number of generations population Pcurrent is evolved in each iter-
ation in the first phase of the algorithm.
N—Maximum number of iterations in the first phase of the algorithm.

1. Pcurrent ← ∅, Pknown ← ∅.
2. Initialise randomly population Pcurrent , calculating the fitness of each individual using

a random weighted objective function.
3. n← 1.
4. Randomly generate a valid set of weights for the objective functions.
5. Evolve Pcurrent during ngenerations (using algorithm 2) and update population Pknown .
6. n← n + 1. If n is greater than N then go to 7. Else go to 4.
7. Show population Pknown to the DM. If the DM is satisfied then stop.
8. Ask the DM to establish limits for each objective function, or weights for each objective

function p, or indicate aspiration and reservation levels for each objective function.
9. Evolve Pcurrent using algorithm 2. Update set Pknown .

10. Show solution represented by xbest to the DM. If the DM wants, show all Pknown-efficient
solutions. If the DM is satisfied stop else go to 8.

Algorithm 4 Memetic algorithm
Xbest —best solution known thus far, f(x)—fitness of individual x , nimp—maximum number
of generation without improvement of f (xbest), nmaxpop—maximum number of individuals
in Pcurrent

1. Initialise xbest , best ← f (xbest), ngen← 1, count ← 0.
2. If ngen>Nger or count>nimp then stop.
3. ngen←ngen + 1. Call procedure generation.
4. If f (xbest) ≥ best then count←count + 1. Else count←0.
5. If count<nimp then ngen←ngen + 1, go to 2. If min {
npop (1+ β)� , nmaxpop} >

npop then npop← min {
npop (1+ β)� , nmaxpop}, initialise randomly the new indi-
viduals and count ← 0. Go to 2.

Algorithm 5 Generation
xbest —represents the best individual in the preceding generation, flag(x)—is equal to true if
x has already passed through the local search procedure, false otherwise, Pcurrent —the cur-
rent population, f (x j)—fitness of individual x , npop—number of individuals in the current
population.

6 We do not allow the existence of replicated individuals in population Pknown .

123

J Glob Optim (2008) 42:221–253 231

1. x1 ← xbest ; xbest ← x1; j ← 2; Newpop← {x1}.
2. If j > npop then Pcurrent ←Newpop.
3. Select parents xA and xB using binary tournament selection.
4. Crossover to generate two children: x j and x j+1. flag(x j)← false; flag(x j+1)← false.
5. Apply the mutation operator to x j .
6. If x j = xA then flag(x j)←flag(xA); if x j = xB then flag(x j)←flag(xB);7

7. Calculate the fitness of x j : f (x j). If f (x j) = +∞, then apply the repair procedure to
x j . If f (x j) < f (xbest) then xbest ← x j .

8. Apply the change openings procedure to x j .
9. If not flag(x j) then apply the local search procedure.

10. If (j + 1) ≤npop then repeat steps 5 to 9 with child x j+1.
11. Newpop←Newpop∪{x j }. If (j + 1) ≤npop then Newpop←Newpop∪{x j+1}. j ←

j + 2. Go to 2.

As can be seen by the previous descriptions, this algorithm has many parameters whose val-
ues have to be fixed and that can influence the algorithm’s behaviour. It is sometimes difficult
to understand the influence of a single parameter over the whole algorithm, and even more
complicated to understand the interaction between parameters. Table 1 lists all parameters
used within the algorithm, and the way in which we think they influence the algorithm’s
behaviour.

4 Interaction with the decision maker

Population Pcurrent evolves through a number of generations, being the evolution guided by
the preferences of the DM. In the initial phase of the interactive method, a set of solutions is
shown to the decision maker. If he/she feels that a good compromise solution has been found,
the method stops. Otherwise, the decision maker is asked to express his/her preferences in
the form of weighting values, limits to the objective function values or reference points. The
interaction between the algorithm and the decision maker is depicted in Fig. 2, and follows
the works of [12,18,20].

If the DM chooses to interact with the algorithm through the establishment of upper limits
to the objective functions’ values, then this will translate into the introduction of additional
restrictions to the problem. An individual that violates this restrictions is penalized, being
given a fitness equal to +∞. Considering these additional restrictions, the algorithm is able
to calculate non-dominated candidate solutions by solving a mono-objective problem [38].
This justifies the use of a weighting objective function. If the problem has only two objec-
tives, the algorithm can calculate the objective functions’ weighting values automatically,
as described in [12,18]. In all other cases, with three objectives or more, the weights are
randomly generated.

If the DM chooses to interact with the algorithm through the establishment of reference
points, the decision maker is asked to indicate aspiration and reservation levels (Granat and
Makowski [23,24], present a software application that illustrates the interactive use of a
reference point based interactive approach).

The algorithm terminates when the DM is satisfied with the solutions calculated, and feels
he/she has gained sufficient insight into the problem and feasible alternatives. The options
taken by the DM in some iteration of the algorithm do not restrict future options: all the
choices made are reversible. The DM may jump from one area of interest to another one.

7 x j is considered equal to xA if all the L-chromosome’s genes are equal.

123

232 J Glob Optim (2008) 42:221–253

Table 1 Algorithm’s Parameters

Parameter Description Influence on the algorithm’s behaviour and
recommended valuesa

pbt Probability of choosing the
most fitness individual in the
binary tournament selection

The greater the probability, the more difficult it
is for less fit individuals to be passed on to the
next generation. It can be used to influence the
diversity of the population. If controlled on line,
this parameter could be increased as the number
of generations increases, to ensure diversity in
the beginning and convergence in the end. In
our algorithm this value is fixed at 0.9.

pµ Probability of changing one
gene in the mutation operator

This parameter can influence the diversity of the
population. If controlled on-line, it could be
decreased as the number of generations
increases, or increased when the best fitness
value does not improve in a given number of
generations. In our algorithm this parameter is
fixed at 0.002.

pls Probability of executing the
local search procedure for each
individual

This parameter influences both the
computational time and the quality of the best
solution found. With values near 1, the
algorithm will converge quicker and with good
quality solutions. It is difficult to estimate how
this parameter influences computational time
because with smaller values each generation is
executed in less computational time but the
convergence towards a good solution is slower,
so the total algorithm’s computational time can
increase. It is advised that pls should be equal to
1 at least in the last generation. In our algorithm
this value is fixed to 1.

z Maximum number of
k-neighbours visited without
improving the individual’s
fitness

This parameter influences the algorithm’s
behaviour in a way similar to the previous one. It
should consider the total number of neighbours
of a given solution which is hard to compute. In
our algorithm we consider z equal to 10000.

pv Probability of visiting a
neighbour that is expected to
improve the individual’s fitness

This parameter influences the algorithm’s
behaviour in a way similar to the previous two
parameters. This probability should be always a
value near to 1. In our algorithm it is fixed to one.

pnv Probability of visiting a
neighbour that is not expected
to improve the individual’s
fitness

This probability influences the computational
time and also the quality of the final solution. To
obtain a good compromise value, we
recommend it should be fixed to a value
between 0 and 0.1.

npop Number of individuals in the
current population

This parameter influences the computational time
and the quality of the final solution: populations
with more individuals will take longer to generate
their children but are genetically more powerful.
Small populations run the risk of under-covering
the solution space [36]. In our algorithm we
calculate the initial population as described in 3.5,
and increase this value whenever there are nimp
generations without improvement of the best
objective function value.

123

J Glob Optim (2008) 42:221–253 233

Table 1 continued

nmaxpop Maximum number of
individuals in the current
population

The number of individuals in the current
population is increased whenever there are a
predefined number of generations without
improving the objective function value. This
parameter influences the total execution time of
the algorithm, and can influence the quality of
the best solution found.

β Percentage of increase in the
number of individuals

This parameter, along with parameter nmaxpop,
controls the number of times the population is
increased. It is hard to predict how it will
influence the quality of the solution or the total
computational time: greater values will
correspond to fewer generations but with longer
computational times per generation. In our
algorithm this value is equal to 25%.

Nger Total maximum number of
generations

It is a parameter that can be used to terminate
the algorithm. If it is completely blind to the
algorithm’s performance, it can be responsible
for premature terminations as well as for
unnecessary generation runs. In our algorithm
this parameter is not important, because it uses
other termination rules.

nimp Maximum number of
generations without improving
the best objective function
value found

This parameter is used to indicate that the
algorithm is converging. In our algorithm, the
number of individuals in the population is
increased whenever there are no improvements
in the objective function during nimp
generations, as a way of increasing the genetic
diversity, and to avoid getting trapped in local
minimums. If the current number of individuals
is equal to nmaxpop, then the algorithm is
terminated after nimp generations without
improving the objective function. It is fixed to 5.

a We have not yet studied deeply the influence of all these parameters in our algorithm. These “recommended
values” are indicated according to the computational experiments made so far.

Although the different interaction possibilities are available we agree with those that prefer
the establishment of reservation and aspiration levels as the best procedures, namely taking
into account cognitive psychology. Furthermore the computational tests of Sect. 5 confirm
this point of view.

5 Computational results

The task of evaluating the quality of a given multi-objective evolutionary algorithm is not
simple, and can be interpreted as a multi-objective problem by itself [52]. When the method
we want to evaluate is interactive, things get even more complicated. When dealing with
interactive approaches, the ideal situation would be to have a set of real decision makers
willing to participate in a series of experiments. This is, most of the times if not always,
not possible. Zitzler et al. [55], consider that to assess the quality of a given evolutionary
algorithm, one should account for the following factors: the distance of the solutions set to
the Pareto-optimum frontier; the distribution of solutions; the range covered by the solutions.
If the solutions are calculated using an interactive method, the resulting set will be strongly

123

234 J Glob Optim (2008) 42:221–253

Fig. 2 Interaction with the decision maker

123

J Glob Optim (2008) 42:221–253 235

210000

260000

310000

360000

410000

215000 265000 315000 365000 415000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 3 First set of solutions

dependent on the decision makers choices and preferences. He/she can decide to explore the
whole non-dominated region, or focus his/her search on only a tiny part of this region. These
kinds of options can influence significantly the quality evaluation of a given solution set.

Our aim was to perform some computational tests in order to assess the memetic algo-
rithm’s capability of calculating non-dominated solutions, and to compare the two different
interactive approaches. We will compare the solution set obtained with the two approaches,
calculating the minimum, average and maximum distance of the non-dominated solutions
to the Pareto-optimal frontier. These metrics can classify the algorithm with respect to its
convergence capabilities. The spacing metric as defined in [8], measuring the spacing of
points on a Pareto frontier, is also going to be calculated.

Three location problems were randomly generated: one uncapacitated single-level loca-
tion problem, with 10 time periods, 25 possible locations for facilities and 100 clients; one
capacitated single-level location problem of the same dimension and one uncapacitated two-
level location problem with 10 time periods, 100 clients, 5 possible locations for facilities
in the last level and 10 in the first level. These problems were generated as described in
[13,16,17].

For the uncapacitated single-level location problem, the algorithm begins by showing to
the decision maker a set of candidate non-dominated solutions, as depicted in Fig. 3. As can
be seen, there are some areas of the non-dominated region that are not covered in this set.
The DM will interact with the algorithm, establishing upper (and lower, if desired) bounds to
the objective functions’ values. These values can be defined explicitly, or by the selection of
two already known solutions. Suppose that he/she establishes the following bounds: the first
objective function has to be lower than 293191 and the second objective function has to be
lower than 335809 (these values are indirectly given by the selection of two solutions, and
lower bounds can also be considered). As can be seen in Fig. 4, the algorithm is capable of
calculating some new solutions in the defined area, but these solutions are not well dispersed.
After two interactions with the decision maker, where he/she defines new upper/lower levels,
the solutions set calculated in the region of interest is shown in Fig. 5. The decision maker is
free to define other areas of interest, as shown in Figs. 6 and 7. In all cases, the algorithm is
capable of calculating solutions within the established upper bounds, but badly dispersed.

If the interaction now asks the decision maker to give aspiration and reservation levels,
then the results are quite different. The values for qi,lo and qi,up are dynamically updated
as the algorithm finds new solutions. They always represent the best lower and upper limits
known for the i th objective function value. Figure 8 shows the first set of solutions calculated
and the aspiration and reservation points given by the decision maker. Figure 9 depicts the

123

236 J Glob Optim (2008) 42:221–253

210000

260000

310000

360000

410000

215000 265000 315000 365000 415000

1st Objective

2n
d

 O
b

je
ct

iv
e

273237

283666

294094

304523

314952

325380

335809

241703 252001 262298 272596 282893 293191

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 4 Calculating solutions in a selected area

273237

283237

293237

303237

313237

323237

333237

241703 251703 261703 271703 281703 291703

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 5 New solutions after two more interactions with the decision maker

210000

260000

310000

360000

410000

210000 260000 310000 360000 410000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 6 Definition of a new area of interest

123

J Glob Optim (2008) 42:221–253 237

219386

224386

229386

234386

239386

244386

249386

254386

310363 330363 350363 370363 390363 410363

1st Objective

2n
d

 O
b

je
ct

iv
e

215936

220936

225936

230936

235936

240936

245936

250936

255936

310363 330363 350363 370363 390363 410363 430363 450363

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 7 New solutions in the new region of interest after one and five interactions

210000

260000

310000

360000

410000

215000 265000 315000 365000 415000

1st Objective

2n
d

 O
b

je
ct

iv
e

210000

260000

310000

360000

410000

215000 265000 315000 365000 415000

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions Reference Points

Fig. 8 First set of solutions and establishment of reference points

123

238 J Glob Optim (2008) 42:221–253

273237

283237

293237

303237

313237

323237

333237

241703 251703 261703 271703 281703 291703

1st Objective

2n
d

 O
b

je
ct

iv
e

200000

250000

300000

350000

400000

215000 265000 315000 365000 415000

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions Reference Points

Fig. 9 Calculation of new solutions, and definition of new reference points

215900

265900

315900

365900

415900

213600 263600 313600 363600 413600

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 10 Solutions set calculated by the definition of reference points

solutions calculated by the algorithm and the establishment of new reference points. With
only two interactions with the decision maker, Fig. 10 shows the total set of solutions calcu-
lated, and Fig. 11 compares this set with the one obtained earlier, when the interaction was
based in the establishment of upper bounds.

Similar results are shown in Figs. 12–21 for the capacitated single-level location prob-
lem. Figs. 12–15 depict the results obtained when the algorithm asks the decision maker to
establish upper bounds to both objective functions. Figures 16–20 show the results when
the interaction is based on the reference point approach. Figure 21 compares the two sets of
solutions.

Figures 22–29 depict the results obtained when solving an uncapacitated two-level loca-
tion problem, and Fig. 30 compares the two sets of solutions.

123

J Glob Optim (2008) 42:221–253 239

215900

265900

315900

365900

415900

213600 263600 313600 363600 413600

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Approach Reference Points Approach

Fig. 11 Comparison with the set calculated by the establishment of upper/lower bounds

154179

164179

174179

184179

194179

204179

214179

224179

234179

154024 164024 174024 184024 194024 204024 214024

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 12 First set of solutions

154179

164179

174179

184179

194179

204179

214179

224179

234179

154024 164024 174024 184024 194024 204024 214024

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 13 Definition of the area of interest

The memetic algorithm developed was compared with the algorithm described in [3]8,
and also with SPEA29 [53]. It is not easy to compare the behaviour and performance of an

8 Notice that this algorithm does not guarantee the calculation of all the non-dominated solutions if in pres-
ence of capacitated facilities, because the dynamic location problems are formulated as mixed-integer linear
programming problems and the solution may be composed of variables with real values.
9 The parameters used in the SPEA2 algorithm were similar to the ones used in the memetic algorithm devel-
oped. The number of individuals in the population was considered equal to the maximum number of individuals
in the population for the memetic algorithm (nmaxpop). The maximum number of iterations considered was
equal to 5000.

123

240 J Glob Optim (2008) 42:221–253

202000

207000

212000

217000

222000

227000

232000

237000

242000

150413 152413 154413 156413 158413 160413

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions from previous set New solutions

Fig. 14 Comparison between the existing and new solutions calculated

153000
163000
173000
183000
193000
203000
213000
223000
233000
243000

150000 160000 170000 180000 190000 200000 210000

1st Objective

2n
d

 O
b

je
ct

iv
e

Previous Set Present Set

Fig. 15 After two interactions with the decision maker, the solutions set suffers few changes

153000
163000

173000

183000

193000

203000

213000

223000

233000
243000

150000 160000 170000 180000 190000 200000 210000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 16 First set of solutions

interactive algorithm with the performance of non-interactive algorithms. As a matter of fact,
the behaviour of the memetic algorithm developed is deeply dependent upon the decision
maker’s choices. That is why we chose to compare only computational times and quality of
solutions calculated.

123

J Glob Optim (2008) 42:221–253 241

153000
163000
173000
183000
193000
203000
213000
223000
233000
243000

150000 160000 170000 180000 190000 200000 210000

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions Reference Points

Fig. 17 Definition of the reference points

170000

175000

180000

185000
190000

195000

200000
205000

210000

160000 165000 170000 175000 180000 185000 190000

1st Objective

2n
d

 O
b

je
ct

iv
e

Initial Set Present set

Fig. 18 New set of solutions

150000

160000

170000

180000

190000

200000

210000

220000

230000

150000 160000 170000 180000 190000 200000 210000 220000

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions Reference Points

Fig. 19 Definition of new reference points

After testing the behaviour of SPEA2 algorithm, we chose to change it including the local
search procedure. As shown in Figs. 31–33, the quality of the solutions calculated is greatly
improved by the introduction of the local search. If the local search procedure had not been
included in SPEA2 then the results would not be comparable with the ones obtained by
executing the memetic algorithm.

123

242 J Glob Optim (2008) 42:221–253

150000

160000

170000

180000

190000

200000

210000

220000

230000

240000

149000 159000 169000 179000 189000 199000 209000 219000 229000 239000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 20 Final set of solutions

144000

164000

184000

204000

224000

244000

146000 156000 166000 176000 186000 196000 206000 216000 226000 236000

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Approach Reference Points Approach

Fig. 21 Comparison of the two different sets

102000

107000

112000

117000

122000

99000 104000 109000 114000 119000 124000 129000 134000 139000 144000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 22 First set of solutions

Figures 34–36 shows the sets of solutions calculated by SPEA2 for the three problems
considered. These figures depict the whole set of solutions calculated during all the gener-
ations and the solutions that belong to the last set. In this way one can get an idea of the
evolution that took place during the algorithm’s execution.

123

J Glob Optim (2008) 42:221–253 243

102000

112000

122000

132000

142000

152000

162000

172000

90000 100000 110000 120000 130000 140000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 23 Definition of the area of interest

122000

132000

142000

152000

162000

172000

182000

90000 91000 92000 93000 94000 95000 96000 97000 98000 99000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 24 Solutions calculated in the area of interest

103000

113000

123000

133000

143000

153000

163000

173000

183000

88000 98000 108000 118000 128000 138000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 25 New region of interest

100000

110000

120000

130000

140000

150000

160000

170000

180000

85000 95000 105000 115000 125000 135000 145000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 26 Final set of solutions

123

244 J Glob Optim (2008) 42:221–253

104000

109000

114000

119000

124000

129000

134000

139000

93000 98000 103000 108000 113000 118000 123000 128000 133000 138000

1st Objective

2n
d

O
b

je
ct

iv
e

Fig. 27 First set of solution for the reference point approach interactive method

104000

109000

114000
119000

124000

129000

134000

139000
144000

89500 99500 109500 119500 129500 139500

1st Objective

2n
d

 O
b

je
ct

iv
e

Solutions Reference Points

Fig. 28 Reference points

100000

110000

120000

130000

140000

150000

160000

170000

180000

85000 95000 105000 115000 125000 135000 145000 155000 165000

1st Objective

2n
d

 O
b

je
ct

iv
e

Fig. 29 Final set of solutions

Figures 37–39 compare different sets of solutions for each of the problems: true Pareto-
optimal solutions calculated using the algorithm described in [3], the sets obtained with both
approaches and also using SPEA2 algorithm.

The local search procedure is a fundamental piece of the memetic algorithm described. It
is responsible for a significant improvement in the quality of solutions calculated. We wanted
to test how this procedure would behave on its own. Figs. 40–42 show the results obtained
by using the local search procedure only, considering as initial solutions randomly generated
solutions. It can be seen that this procedure alone is not sufficient to generate good quality
solutions.

123

J Glob Optim (2008) 42:221–253 245

103000

113000

123000

133000

143000

153000

163000

173000

183000

88000 98000 108000 118000 128000 138000 148000 158000

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Approach Reference Points Approach

Fig. 30 Comparison of the two different sets of solutions

228000

278000

328000

378000

428000

213500 263500 313500 363500 413500

1st Objective

2n
d

 O
b

je
ct

iv
e

SPEA2 with local search SPEA2 without local search

Fig. 31 SPEA2’s sets of solutions for the uncapacitated problem with and without the local search procedure

152900

172900

192900

212900

232900

252900

148000 168000 188000 208000 228000 248000

1st Objective

2n
d

 O
b

je
ct

iv
e

SPEA2 with local search SPEA2 without local search

Fig. 32 SPEA2’s sets of solutions for the capacitated problem with and without the local search procedure

Tables 2–4 summarize the computational results obtained for all problems solved. Table 2
shows, for each problem and for each algorithm tested, the number of solutions calculated,
the distance from the solutions calculated to the true Pareto-optimal frontier, and the spac-
ing metric. Table 3 compares the non-dominated sets calculated by each of the algorithms.
Table 4 shows the computational times.

Trying to draw some conclusions from the results obtained, and considering first the
two interactive approaches, how can be justified the fact that the reference point approach
presents, in all three cases, better results? At a first glance, one could think that the main
reason is due to the use of randomly generated weights that are more often changed. This can,

123

246 J Glob Optim (2008) 42:221–253

104400

114400

124400

134400

144400

154400

164400

174400

184400

88000 93000 98000 103000 108000 113000 118000 123000 128000 133000

1st Objective

2n
d

 O
b

je
ct

iv
e

SPEA2 with local search SPEA2 without local search

Fig. 33 SPEA2’s sets of solutions for the two-level uncapacitated problem with and without the local search
procedure

227000

277000

327000

377000

427000

213000 233000 253000 273000 293000 313000 333000 353000 373000

1st Objective

2n
d

 O
b

je
ct

iv
e

Whole set of solutions Last set of solutions

Fig. 34 SPEA2’s sets of solutions for the uncapacitated problem

144000

164000

184000

204000

224000

244000

264000

146000 166000 186000 206000 226000 246000

1st Objective

2n
d

 O
b

je
ct

iv
e

Whole set of solutions Last set of solutions

Fig. 35 SPEA2’s sets of solutions for the capacitated problem

in fact, be an important part of the answer. But the true justification lies in the fitness function
itself. As a matter of fact, if the weights were randomly chosen or changed more often, in
the establishment of bounds approach, it would result in worse outcomes. The quality of a
given individual is given by the value of the weighted objective function, considering addi-
tional restrictions that correspond to the bounds introduced. If the weights were calculated
or changed in a different way, most of the generated individuals would not be feasible, with
respect to the bounds established, so the overall results would be worse. The strength of the

123

J Glob Optim (2008) 42:221–253 247

104000

124000

144000

164000

184000

204000

88000 98000 108000 118000 128000 138000 148000 158000 168000

1st Objective

2n
d

 O
b

je
ct

iv
e

Whole set of solutions Last set of solutions

Fig. 36 SPEA2’s sets of solutions for the two-level uncapacitated problem

215900

265900

315900

365900

415900

213600 263600 313600 363600 413600

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Reference Points SPEA2 Optimal Pareto Solutions

Fig. 37 Uncapacitated single-level location problem: comparison of different sets of solutions

144000

164000

184000

204000

224000

244000

146000 156000 166000 176000 186000 196000 206000 216000 226000 236000

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Reference Points SPEA2 Optimal Pareto Solutions

Fig. 38 Capacitated single-level location problem: comparison of different sets of solutions

reference point approach comes from the fitness function it considers, that is not dependent
on a given set of weights.

Comparing now the SPEA2 algorithm with the interactive memetic algorithm, one can say
that SPEA2 is capable of calculating more solutions per generation, but these solutions are
generally more badly dispersed than the solutions calculated by both interactive approaches.

123

248 J Glob Optim (2008) 42:221–253

103000

113000

123000

133000

143000

153000

163000

173000

183000

88000 98000 108000 118000 128000 138000 148000 158000

1st Objective

2n
d

 O
b

je
ct

iv
e

Upper Bounds Reference Points SPEA2 Optimal Pareto Solutions

Fig. 39 Uncapacitated two-level location problem: comparison of different sets of solutions

216000

266000

316000

366000

416000

466000

516000

566000

216000 266000 316000 366000 416000 466000 516000 566000

1st Objective

2n
d

 O
b

je
ct

iv
e

Local Search Reference Points

Fig. 40 Comparison between the solutions’ sets calculated by the reference point approach and applying
local search only: uncapacitated location problem

In Table 3 it is clear that most of the solutions calculated by SPEA2 are dominated by solutions
calculated by the interactive algorithm.

The Chalmet et al. [3], algorithm is capable of calculating non-dominated solutions, but
it takes a longer time per solution. Nevertheless we cannot forget that the solutions gener-
ated by this algorithm are non-dominated for sure. If the decision maker has the time and
wants to generate a large set of non-dominated solutions, he/she should choose to use such
an algorithm. If, on the other hand, the decision maker wants to have a glance over the whole
non-dominated set, then he/she could prefer the memetic algorithm. Despite the fact that the
solutions calculated are not all non-dominated, the decision maker can control the process
of exploring chosen areas in the objective functions’ space and visualize an approximation
set of the real non-dominated solutions.

Regarding computational times (Table 4), the memetic algorithm takes longer than what
would be desired. SPEA2 is also very time consuming (because of the local search procedure).
The computational times do not differ significantly from one approach to the other, and are
worse in the capacitated problem. This value diminishes in the case of the two-level location
problem. These computational times have to be improved, especially through changes in the
local search procedure that is the main responsible for these times.

123

J Glob Optim (2008) 42:221–253 249

150000

200000

250000

300000

350000

149000 169000 189000 209000 229000 249000 269000 289000 309000 329000

1st Objective

2n
d

 O
b

je
ct

iv
e

Local Search Reference Points

Fig. 41 Comparison between the solutions’ sets calculated by the reference point approach and applying
local search only: capacitated location problem

103000

113000
123000

133000
143000
153000
163000

173000
183000

88000 98000 108000 118000 128000 138000 148000 158000

1st objective

2n
d

 O
b

je
ct

iv
e

Local Search Reference Points

Fig. 42 Comparison between the solutions’ sets calculated by the reference point approach and applying
local search only: two-level location problem

6 Conclusions and future work

In this paper a memetic algorithm is described that can be used inside an interactive approach
to calculate non-dominated solutions to dynamic location problems. Two different approaches
are possible: the decision maker expresses his/her preferences through the establishment of
upper bounds on the objective function values, or through the indication of reference points.
Both approaches were applied to three bi-objective location problems. It is possible to con-
clude that, for all cases, the reference point approach is capable of finding more and better
solutions in less iterations than the other approach. Both approaches are capable of finding
solutions according to the decision maker’s preferences, but the reference point approach
builds better sets, as can be seen in Table 3. The worst results are obtained when capacity
restrictions are introduced. This can be justified by the representation chosen (the assignment
variables are calculated for each individual, and are not codified in any way), and also because
the number of unfeasible individuals is much higher than in the uncapacitated cases. For the
uncapacitated problems, the sets calculated are a good representation of the set of true Pareto
optimal solutions.

The memetic algorithm shown can be used in problems with any number of objectives.
With more than two objectives, the interaction with the decision maker cannot rely only
on bi-dimensional charts, and other ways of illustrating the compromises between solutions
have to be thought.

123

250 J Glob Optim (2008) 42:221–253

Table 2 Computational results

Chalmet et al. [3] TNS MA_ED AED MI_ED SM

Single-level
Uncapacitated
Problem

21175 RPS 417 5518.32 445.09 0.00 0.97

UBS 134 7993.00 888.64 1.41 1.03

SPEA2 12709 20463.00/ 6031.42/ 0.00 1.79

15226.70 3550.19

Single-level
Capacitated
Problem

1878 RPS 47 14973.90 9927.05 3373.00 0.48

UBS 32 17911.70 11038.05 7082.50 0.83

SPEA2 8612 44426.70/ 14637.70/ 2729.52 1.46

28290.80 12443.00

Two-level
Uncapacitated
Problem

16403 RPS 97 1623.28 65.85 0.00 0.59

UBS 30 1811.2 549.16 0.00 0.62

SPEA2 2694 40726.60/ 7668.47/ 0.00 1.26

7468.86 1538.28

RPS: Solutions’ set generated by the reference point approach; UBS: Solutions’ set generated by the estab-
lishment of bounds approach; SPEA2: Solutions’ set generated by the SPEA2 algorithm; Chalmet et al. [3]:
Total number of non-dominated solutions calculated; TNS: Total number of different solutions calculated;
MA_ED, AED, MI_ED: Maximum, average and minimum euclidean distance between a solution and the real
Pareto-optimal frontier. In the case of the SPEA2 algorithm two values are shown: the distance considering
the set of all solutions calculated during the algorithm’s execution and the final set of solutions, respectively;
SM: spacing metric

Table 3 Comparison of non-dominated solutions’ set

Uncapacitated problem Capacitated problem Two-level problem

SPEA2 UBS RPS SPEA2 UBS RPS SPEA2 UBS RPS

SPEA2 – 7685
(60%)

11775
(93%)

– 6853
(80%)

8476
(98%)

– 2640
(98%)

2665
(99%)

UBS 26
(19%)

– 70
(52%)

21
(68%)

– 24
(75%)

6
(20%)

– 11
(37%)

RPS 39
(9%)

32
(8%)

– 25
(54%)

0 – 0 2
(2%)

–

SPEA2: SPEA2 algorithm; UBS: Upper bounds approach; RPS: Reference points approach; Each cell in this
table represents the number of solutions generated by the algorithm identified in the line that are dominated
by solutions generated by the algorithm identified in the column

It is also interesting to consider the possibility of introducing new restrictions to the prob-
lem as the decision maker gains knowledge about the problem. He/she could, for instance, fix
some facility open or close in one or more time periods. As most of the strategical location
problems are group decision problems, we intend to work on this algorithm considering a
multi decision maker context.

123

J Glob Optim (2008) 42:221–253 251

Table 4 Computational times

Chalmet SPEA2 Upper Reference

et al. [3] bounds points

approach approach

Average computational Uncapacitated problem 23.05 0.41 0.45 0.51

time per solution Capacitated problem 143.62 1.24 2.37 2.65

(in seconds) Two-level 4.67 0.04 0.04 0.04

uncapacitated problem

Average computational Uncapacitated problem − 20.43 8.84 9.99

time per generation Capacitated problem − 145.00 42.47 42.88

(in seconds) Two-level − 1.89 0.67 0.73

uncapacitated problem

Acknowledgements This research was partially supported by research project POCTI/ISFL-1/152.

References

1. Barbosa, H.J.C., Barreto, A.M.S.: An interactive genetic algorithm with co-evolution of weights for mul-
tiobjective problems. In: Proceedings of the Genetic and Evolutionary Computation Conference (2001)

2. Branke, J., Kaubler, T., Schmek, H.: Guidance in evolutionary multi-objective optimization. Adv. Eng.
Softw. Elsevier Publisher 32, 499–507 (2001)

3. Chalmet, L.G., Lemonidis, L., Elzinga, D.J.: An algorithm for the bi-criterion integer programming
problem. Eur. J. Oper. Res. 25, 292–300 (1986)

4. Cheung, B.K.-S., Langevin, A., Villeneuve, B.: High performing techniques for solving complex location
problems in industrial system design. J. Intelligent Manufa. 12, 455–466 (2001)

5. Coello Coello, C.A.: Handling preferences in evolutionary multiobjective optimization: a survey. In:
Congress on Evolutionary Computation Proceedings (2000)

6. Coello Coello, C.A.: Theoretical and numerical constraint-handling techniques used with evolutionary
algorithms: a survey and the state of the art. Comput. Meth. Appl. Mech. Eng. 191, 1245–1287 (2002)

7. Coello Coello, C.A., Van Veldhuizen, D., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-
Objective Problems. Kluwer Academic/Plenum Publishers (2002)

8. Collette, Y., Siarry, P.: Three new metrics to measure the convergence of metaheuristics towards the pareto
frontier and the aesthetic of a set of solutions in biobjective optimization. Comput. Oper. Res. 32, 773–
792 (2005)

9. Correa, E.S., Steiner, M.T.A., Freitas, A.A., Carnieri, C.: A genetic algorithm for the P-median problem.
Proceedings 2001 Genetic and Evolutionary Computation GECCO2001 (2001)

10. Cortinhal, M.J., Captivo, M.E.: Genetic algorithms for the single source capacitated location problem.
In: Resende, M., Sousa, J.P.d. (eds.) Metaheuristics: Computer Decision-Making, pp. 187–216. Kluwer
Academic (2003)

11. Deb, K.: Multi-objective Optimization using Evolutionary Algorithms. John Wiley & Sons (2001)
12. Dias, J., Captivo, M.E., Clímaco, J.: An interactive procedure dedicated to a bicriteria plant location

model. Comput. Oper. Res. 30, 1977–2002 (2003)
13. Dias, J., Captivo, M.E., Clímaco, J.: Dynamic multi-level capacitated and uncapacitated location prob-

lems: an approach using primal-dual heuristics. Research Report 26/2004 Inesc-Coimbra, available on
http://www.inescc.pt/documentos/26_2004.pdf (2004)

14. Dias, J., Captivo, M.E., Clímaco, J.: Dynamic multi-level capacitated and uncapacitated location prob-
lems: an approach using primal-dual heuristics. In: INOC’05 Proceedings, Lisbon (2005a)

15. Dias, J., Captivo, M.E., Clímaco, J.: A Hybrid algorithm for dynamic location problems. Inescc Research
Report n. 3/2005, available on http://www.inescc.pt/documentos/3_2005.pdf (2005b)

123

http://www.inescc.pt/documentos/26_2004.pdf
http://www.inescc.pt/documentos/3_2005.pdf

252 J Glob Optim (2008) 42:221–253

16. Dias, J., Captivo, M. E., Clímaco, J.: Capacitated dynamic location problems with opening, closure and
reopening of facilites. In: Salhi, S., Drezner, Z. (eds.) IMA J. Manage. Math.: Models Appl. Location
Anal. 17(4) 317–348 (2006)

17. Dias, J., Captivo, M.E., Clímaco, J.: Efficient primal-dual heuristic for a dynamic location problem. Com-
put. Oper. Res. 34, 1800–1823 (2007b)

18. Dias, J.M.: Localização Simples Multicritério: desenvolvimento de um algoritmo em ambiente interac-
tivo. MsC thesis, Faculdade de Ciências da Universidade de Lisboa (2000)

19. Domínguez-Marín, P., Nickel, S., Hansen, P., Mladenovic, N.: Heuristic procedures for solving the dis-
crete ordered median problem. Ann. Oper. Res. 136, 145–173 (2005)

20. Ferreira, C.: Problemas de Localização e Distribuição Multicritério: aproximações e estudo de alguns
casos com implicações ambientais. Departamento de Matemática (1997)

21. Filipovic, V., Kratica, J., Tosic, D., Ljubic, I.: Fine grained tornament selection for the simple plant
location problem. In: Proceedings of the 5th Online World Conference on Soft Computing Methods in
Indsutrial Applications WSC5, September 2000

22. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion
and generalisation. genetic algorithms: Proceedings of the Fifth International Conference, San Mateo,
CA (1993)

23. Granat, J., Makowski, M.: ISAAP—Interactive Specification and Analysis of Aspiration-Based Prefer-
ences. IR-98–052 (1998)

24. Granat, J., Makowski, M.: Interactive specification and analysis of aspiration-based preferences. Eur. J.
Oper. Res. 122, 469–485 (2000)

25. Hosage, C.M., Goodchild, M.F.: Discrete space location-allocation solutions from genetic algo-
rithms. Ann. Oper. Res. 6, 35–46 (1986)

26. Hultz, J., Klingman, D., Ross, G.T., Soland, R.: An interactive computer system for multicriteria facility
location. Comput. Oper. Res. 8, 249–261 (1981)

27. Huntley, C., Brown, D.: Parallel genetic algorithms with local search. Comput. Oper. Res. 23, 559–
571 (1996)

28. Jaramillo, J., Bhadury, J., Batta, R.: On the use of genetic algorithms to solve location problems. Comput.
Oper. Res. 29, 761–779 (2002)

29. Jones, D.F., Mirrazavi, S.K., Tamiz, M.: Multi-objective meta-heuristics: an overview of the current
sate-of-the-art. Eur. J. Oper. Res. 137, 1–9 (2002)

30. Kratica, J.: Improvement of simple genetic algorithm for solving the uncapacitated warehouse location
problem. Adv. Soft Comput. Eng. Design Manufact. 390–402 (1999)

31. Kratica, J., Tosic, D., Filipovic, V., Ljubic, I.: Solving the simple plant location problem by genetic
algorithm. RAIRO Oper. Res. 35, 127–142 (2001)

32. Murata, T., Ishibuchi, H., Gen, M.: Neighborhood structures for genetic local search algorithms. IEEE
Trans. Syst. Man Cybernetics 259–263 (1998)

33. Oei, C.K., Goldberg, D.E., Chang, S.-J.: Tournament Selection, Niching and the Preservation of Diver-
sity.91011 (1991)

34. Osman, I.H., Kelly, J.P.: Meta-Heuristics: Theory & Applications. Kluwer Academic Publishers (1996)
35. Reeves, C., Höhn, C.: Integrating local search into genetic algorithms. Modern Heuristic Search Meth.

99–115 (1996)
36. Reeves, C.R.: Using genetic algorithms with small populations. In: Proceedings of the Fifth International

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA (1993)
37. Revelle, C., Laporte, G.: The plant location problem: new models and research prospects. Oper.

Res. 44, 864–873 (1996)
38. Ross, T., Soland, R.: A multicriteria approach to the location of public facilities. Eur. J. Oper. Res. 4, 307–

321 (1980)
39. Rothlauf, F., Goldberg, D.: Redundant representations in evolutionary computation. Research Report n.

2002025, Illinois Genetic Algorithms Laboratory (IlliGAL) Report (2002)
40. Sakawa, M., Kato, K.: An interactive fuzzy satisficing method for general multiobjective 0–1 program-

ming problems through genetic algorithms with double strings based on a reference solution. Fuzzy Sets
Syst. 125, 289–300 (2002)

41. Schaffer, J.D.: Multiple objective optimization with vector evaluated genetic algorithms. genetic algo-
rithms and their applications: Proceedings of the First International Conference on Genetic Algorithms
(1985)

42. Shibuya, M., Kita, H., Kobayashi, S.: Integration of multi-objective and interactive genetic algorithms
and its application to animation design. IEEE Transactions on Syst. Man. Cybern. 3, 646–651 (1999)

43. Shimizu, Y.: Multi-objective optimization for site location problems through hybrid genetic algorithm
with neural networks. J. Chem. Eng. Jpn. 32, 51–58 (1999)

123

J Glob Optim (2008) 42:221–253 253

44. Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algo-
rithms. Evol. Comput. 2, 221–248 (1994)

45. Szczepanski, M., Wierzbicki, A.: Multiple criteria evolutionary algorithms in relation to reference point
approaches and nadir estimation. International Conference on Multiple Criteria Decision Making, Austria
2002

46. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithms: analysing the state-of-
the-art. Evol. Comput. 8, 125–147 (2000)

47. Veldhuizen, D.V.: Multiobjective Evolutionary Algorithms: Classifications, Analysis and New Innova-
tions, PhD Thesis, Air Force Institute of Technology, Faculty of the Graduate school of Engineering
(1999)

48. Weber, M., Borcherding, K.: Behavioral influences on weight judgements in multiattribute decision
making. Eur. J. Oper. Res. 67, 1–12 (1993)

49. Wierzbicki, A.: Multi-objective and reference point optimization tools. In: Makowski, M., Wierzbicki,
A.P., Wessels, J. (eds.) Model-Based Decision Support Methodology with Environmental Applications,
pp. 215–247. Kluwer Academic Publishers (2000a)

50. Wierzbicki, A.: Reference point methodology. In: M. M. Andrzej Wierzbicki, Jaap Wessels (eds.) Model-
Based Decision Support Methodology with Environmental Applications, pp. 71–89. Kluwer Academic
Publishers (2000b)

51. Yagiura, M., Ibaraki, T.: The use of dynamic programming in genetic algorithms for permutation prob-
lems. Eur. J. Oper. Res. 92, 387–401 (1996)

52. Zitzler, E., Laumanns, M., Thiele, L., Fonseca, C.M., Fonseca, V.G.D.: Why quality assessment of multi-
objective optimizers is difficult. In: Proceedings of the Genetic and Evolutionary Computation Conference
(2002a)

53. Zitzler, E. Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm for
Multiobjective Optimization. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailiou, K., Fogarty, T.
(eds) Evolutionary Methods for Design, 95–100. CIMNE Barcelona, Spain (2002b)

54. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength
pareto approach. IEEE Trans. Evol. Comput. 3, 257–271 (1999)

55. Zitzler, E., Thiele, L., Deb, K.: Comparison of multiobjective evolutionary algorithms: empirical re-
sults. Evol. Comput. 8, 173–195 (2000)

123

	A memetic algorithm for multi-objective dynamic location problems
	Abstract
	1 Introduction
	2 The dynamic location problem
	3 The memetic algorithm
	3.1 Representation of solutions
	3.2 Fitness and calculation of optimal assignments
	3.3 Genetic operators
	3.4 Local search
	3.5 Populations
	3.6 The overall algorithm

	4 Interaction with the decision maker
	5 Computational results
	6 Conclusions and future work
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

